py-kms Documentation

SystemRage

Mar 23, 2024

CONTENTS

Contributing 3
Documentation 5
2.1 Understanding Key Management Service o v ittt 5
2.2 Supported Products e e 7
2.3 Further References e 7
Getting Started 9
3.1 Runnin@asaservice i e e e e e e 9
3.2 Manual Execution L e e e e e e e e 13
GVLK Keys 17
4.1 WINdOWS . . . o o o e e e e e e e e e e e e e e 18
42 Office o o e 18
Troubleshooting 19
Usage 21
6.1 Start Parameters e e e e 21
6.2 Docker Environment L Lo e e e e e e e e e e 25
6.3 Activation Procedure L L e e e e 26
Changelog 31
7.1 py-kms_2022-12-16 o o e e e e e e e e e 31
7.2 py-kms_2022-12-07 o o e e e e e 31
7.3 py-kms_2021-12-23 . . . e e e e 31
7.4 py-kms_2021-10-22 e e e e e e e e e e 32
7.5 py-kms_2021-10-07 o o o e e e e 32
7.6 py-kms_2021-11-12 e e e e 32
7.7 py-kms_2020-10-01 oL 32
7.8 py-kms_2020-07-01 o e e 33
7.9 py-kms_2020-02-02 oL e e e 33
7.10 py-kms_2019-05-15 o oL e e e 33
7.1 py-kms_2018-11-15 o o 33
7.12 py-kms_2018-03-01 L e 34
713 py-kms_2017-06-01 o L e e e e 34
714 py-kms_2016-12-30 L L e e e 34
7.15 py-kms_2016-08-13 L L e e 34
7.16 py-kms_2016-08-12 L e e e 34
707 py-kms_2016-08-11 L e e 34
718 py-kms_2015-07-29 o L e e 35

7.19 py-kms_2014-10-13build 3: oL 35
7.20 py-kms_2014-10-13build 2: o e e e e e 35
7.21 py-kms_2014-10-13build 1: L . o e e e e 35
7.22 py-kms_2014-03-21T2329437Z: o o e e e 35
7.23 py-kms_2014-01-03T032458Z: o o o e e e 35
7.24 py-kms_2014-01-03T0255247:« o o o e e e 35
7.25 py-kms_2013-12-30T0644437Z: o o e e e e e e e e e 36
7.26 py-kms_2013-12-28TO073500Z: o o o e e e e e e e e e 36
7.27 py-kms_2013-12-20T051257Z: o o o e 36
7.28 py-kms_2013-12-16T214638Z: o o e e e e 36
7.29 py-kms_2013-12-16T030001Z: o o o o e e e 36
7.30 py-kms_2013-12-16T021215Z:« o o o e e 36
7.31 py-kms_2013-12-14T230215Z« o v o o e e e e e e e e e e e e 36
7.32 py-kms_2013-12-08TOS513327Z: o o e e e e e e e e 37
7.33 py-kms_2013-12-06T034100Z: o o i e e e 37
7.34 py-kms_2013-12-05T044849Z: o o 0 e e 37
7.35 py-kms_2013-12-04T0109427Z: o o o e e e 37
7.36 py-kms_2013-12-01T063938Z: o o e e e e e e e e 37
7.37 py-kms_2013-11-27TO61658Z: o o e e e e e e e 37
7.38 py-kms_2013-11-27T0547447Z: o o e e e e e 37
7.39 py-kms_2013-11-23T0442447: o e e e e 38
7.40 py-kms_2013-11-21TO0140027Z:« o o o e e e 38
7.41 py-kms_2013-11-20T180347Z: o o o e e e e e e e e e e e e e 38
742 py-kms_2013-11-13: . . . o L e e e e e e e e 38
Readme 39
.1 HIStOTY . . o v o e e e e e e e e e e e e 39
8.2 Features e e e e e e e e e e e e e 39
8.3 Documentation e 40
8.4 Quick start e e e e e e e e e e e e e e e e e e 40
8.5 LiCense e e e 40

py-kms Documentation

Contents:

CONTENTS 1

py-kms Documentation

2 CONTENTS

CHAPTER
ONE

CONTRIBUTING

You want to improve this project? Awesome! But before you write or modify the existing source code, please note the
following guideline:

* Always make sure to add your changes to the wiki.
 8-space indentation without tabs.

* Docstrings as this:

i

""" This is single line docstring.
""" This is a
""" multiline comment.

* Wrap lines only if really long (it does not matter 79 chars return)

¢ For the rest a bit as it comes with a look at PEPS :)

https://www.python.org/dev/peps/pep-0008/

py-kms Documentation

4 Chapter 1. Contributing

CHAPTER
TWO

DOCUMENTATION

What follows are some detailed explanations how the KMS infrastructure works.

2.1 Understanding Key Management Service

KMS activates Microsoft products on a local network, eliminating the need for individual computers to connect to
Microsoft. To do this, KMS uses a client—server topology. A KMS client locates a KMS server by using DNS or a static
configuration, then contact it by using Remote Procedure Call (RPC) and tries to activate against it. KMS can activate
both physical computers and virtual machines, but a network must meet or exceed the activation threshold (minimum
number of computers that KMS requires) of 25. For activation, KMS clients on the network need to install a KMS
client key (General Volume License Key, GVLK), so the product no longer asks Microsoft server but a user—defined
server (the KMS server) which usually resides in a company’s intranet.

py-kms is a free open source KMS server emulator written in Python, while Microsoft gives their KMS server only to
corporations that signed a Select contract. Furthermore py-kms never refuses activation since it is without restrictions,
while the Microsoft KMS server only activates the products the customer has paid for. py-kms supports KMS protocol
versions 4, 5 and 6.

Although py-kms does neither require an activation key nor any payment, it is not meant to run illegal copies of
Windows. Its purpose is to ensure that owners of legal copies can use their software without restrictions, e.g. if you
buy a new computer or motherboard and your key will be refused activation from Microsoft servers due to hardware
changes.

Activation with py-kms is achieved with the following steps:
1. Run py-kms on a computer in the network (this is KMS server or local host).

2. Install the product on client (or said remote host, which is the computer sending data to local host) and enter the
GVLK.

3. Configure the client to use the KMS server.

Note that KMS activations are only valid for 180 days, the activation validity interval, or 30 to 45 days with consumer-
only products. To remain activated, KMS client computers must renew their activation by connecting to the KMS
server at least once every 180 days. For this to work, you have to should ensure that a KMS server is always reachable
for all clients on the network. Also remember you can’t activate Windows 8.1 (and above) on a KMS server hosted
on the same machine (the KMS server must be a different computer than the client).

py-kms Documentation

2.1.1 About GVLK keys

The GVLK keys for products sold via volume license contracts (renewal every 180 days) are published on Microsoft’s
Technet web site.

* Windows: https://technet.microsoft.com/en-us/library/jj612867.aspx

* Office 2010: https://technet.microsoft.com/en-us/library/ee624355(v=office.14).aspx#section2_3
 Office 2013: https://technet.microsoft.com/en-us/library/dn385360.aspx

* Office 2016: https://technet.microsoft.com/en-en/library/dn385360(v=office.16).aspx

There are also not official keys for consumer-only versions of Windows that require activation renewal every 45 days
(Windows 8.1) or 30 days (Windows 8). A more complete and well defined list is available here.

2.1.2 SLMGR and OSPP commands

The software License Manager (slmgr. vbs) is a Visual Basic script used to configure and retrieve Volume Activation
information. The script can be run locally or remotely on the target computer, using the Windows-based script host
(wscript.exe) or the command-based script host (cscript.exe) - administrators can specify which script engine
to use. If no script engine is specified, SLMGR runs using the default script engine (it is recommended to utilize the
cscript.exe script engine that resides in the system32 directory). The Software Licensing Service must be restarted
for any changes to take effect. To restart it, the Microsoft Management Console (MMC) Services can be used or running
the following command:

[net stop sppsvc && net start sppsvc]

The SLMGR requires at least one parameter. If the script is run without any parameters, it displays help information.
The general syntax of slmgr.vbs is as follows (using the cscript.exe as the script engine):

cscript slmgr.vbs /parameter
cscript slmgr.vbs [ComputerName] [User] [Password] [Option]

Where command line options are:

[ComputerName] Name of a remote computer (default is local computer).

[User] Account with the required privilege on the remote computer.

[Password] Password for the account with required privileges on the remote compute.
[Option] Options are shown in the table below.

SLMGR

Following tables lists SLMGR more relevant options and a brief description of each. Most of the parameters configure
the KMS host.

6 Chapter 2. Documentation

https://technet.microsoft.com/en-us/library/jj612867.aspx
https://technet.microsoft.com/en-us/library/ee624355(v=office.14).aspx
https://technet.microsoft.com/en-us/library/dn385360.aspx
https://technet.microsoft.com/en-en/library/dn385360(v=office.16).aspx

py-kms Documentation

OSPP

The Office Software Protection Platform script (ospp. vbs) can help you to configure and test volume license editions
of Office client products. You must open a command prompt by using administrator permissions and navigate to the
folder that contains the mentioned script. The script is located in the folder of the Office installation (use \Officel4
for Office 2010, \Officel5 for Office 2013 and \Officel6 for Office 2016): %installdir%\Program Files\
Microsoft Office\Officel5. If you are running a 32-bit Office on a 64-bit operating system, the script is located
in the folder: %installdir%\Program Files (x86)\Microsoft Office\Officels5.

Running OSPP requires the cscript.exe script engine. To see the help file, type the following command, and then
press ENTER:

[cscript ospp.vbs /?

The general syntax is as follows:

[cscript ospp.vbs [Option:Value] [ComputerName] [User] [Password]

Where command line options are:

[Option:Value] Specifies the option and Value to use to activate a product, install or.
—uninstall a product key, install and display license information, set KMS host name.
—.and port, and remove KMS host. The options and values are listed in the tables below.
[ComputerName] Name of the remote computer. If a computer name is not provided, the.
—local computer is used.

[User] Account that has the required permission on the remote computer.
[Password] Password for the account. If a user account and password are not.
—provided, the current credentials are used.

2.2 Supported Products

Note that it is possible to activate all versions in the VL (Volume License) channel, so long as you provide the proper
key to let Windows know that it should be activating against a KMS server. KMS activation can’t be used for Retail
channel products, however you can install a VL product key specific to your edition of Windows even if it was installed
as Retail. This effectively converts Retail installation to VL channel and will allow you to activate from a KMS server.
However, this is not valid for Office’s products, so Office, Project and Visio must be always volume license versions.
Newer version may work as long as the KMS protocol does not change. ..

2.3 Further References

[1] https://forums.mydigitallife.net/threads/emulated-kms-servers-on-non-windows-platforms.50234

[2] https://forums.mydigitallife.net/threads/discussion-microsoft-office-2019.75232

[3] https://forums.mydigitallife.net/threads/miscellaneous-kms-related-developments.52594

[4] https://forums.mydigitallife.net/threads/kms-activate-windows-8-1-en-pro-and-office-2013.49686

[5] https://github.com/myanaloglife/py-kms

[6] https://github.com/Wind4/vimcsd

[7] https://github.com/ThunderEX/py-kms

[8] https://github.com/CNMan/balala/blob/master/pkconfig.csv

2.2. Supported Products 7

py-kms Documentation

* [9] http://www.level Ttechgroup.com/docs/kms_overview.pdf

e [10] https://www.dell.com/support/article/it/it/itbsdt1/sIn266176/windows-server-using-the-key-management-
service-kms-for-activation-of-volume-licensed-systems ?lang=en

e [11] https://social.technet.microsoft.com/Forums/en-US/c3331743-cba2-4d92-88aa-9633ac74793a/office-
2010-kms-current-count-remain-at- 10?forum=officesetupdeployprevious

* [12] https://betawiki.net/wiki/Microsoft_ Windows
e [13] https://thecollectionbook.info/builds/windows
* [14] https://www.betaarchive.com/forum/viewtopic.php%3Ft%3D29131+&cd=10&hl=it&ct=clnk&gl=it

* [15] https://www.google.com/url 7sa=t&rct=j&q=&esrc=s&source=web&cd=12&cad=rja&uact=8&ved=2ahUKEwjmvZihtOHe
by-step%2520guide.doc&usg=A0vVaw3kqghCu3xT-3r416DRGUUs_

* [16] https://www.itprotoday.com/windows-78/volume-activation-server-2008
* [17] https://docs.microsoft.com/en-us/windows-server/get-started-19/activation-19
* [18] https://docs.microsoft.com/en-us/windows-server/get-started/windows-server-release-info

* [19] https://support.microsoft.com/en-us/help/13853/windows-lifecycle-fact-sheet

8 Chapter 2. Documentation

CHAPTER
THREE

GETTING STARTED

What follows are some guides how to start the pykms_Server. py script, which provides the emulated server.

3.1 Running as a service

You can simply manage a daemon that runs as a background process. This can be achieved by using any of the notes
below or by writing your own solution.

3.1.1 Docker

If you wish to get py-kms just up and running without installing any dependencies or writing own scripts: Just use
Docker ! Docker also solves problems regarding the explicit IPv4 and IPv6 usage (it just supports both). The following
command will download, “install” and start py-kms and also keep it alive after any service disruption.

docker run -d --name py-kms --restart always -p 1688:1688 -v /etc/localtime:/etc/
—localtime:ro ghcr.io/py-kms-organization/py-kms

If you just want to use the image and don’t want to build them yourself, you can always use the official image at the
GitHub Container Registry (ghcr.io/py-kms-organization/py-kms). To ensure that you are using always the
latest version you should check something like watchtower out!

Tags

There are currently three tags of the image available (select one just by appending : <tag> to the image from above):
e latest, currently the same like minimal.

e minimal, which is based on the python3 minimal configuration of py-kms. This tag does NOT include sqlite
support !

e python3, which is fully configurable and equipped with sqlite support and a web-interface (make sure to
expose port 8080) for management.

Wait... Web-interface? Yes! py-kms now comes with a simple web-ui to let you browse the known clients or its
supported products. In case you wonder, here is a screenshot of the web-ui (note that this screenshot may not reflect
the current state of the ui):

https://github.com/Py-KMS-Organization/py-kms/pkgs/container/py-kms
https://github.com/containrrr/watchtower

py-kms Documentation

CLIENTS WINDOWS OFFICE PRODUCTS

Client ID Machine Name Application ID SKUID License Status Last Seen KMS EPID Seen Count

39bse7ef-08eb-4712-b53c-6de7affec7as |rLyZubdhHEq... Windows Windows 8.1 Grace Period 12/11/2022, 03612:00206-5... 1
Enterprise 10:10:28 PM

d385fhed-3d96-4d9d-asel-9a398b2Fd979 UH3wH2uOYT6MMM ~ Windows Windows 8.1 Grace Period 12/11/2022, 03612-00206-5.. 1
Enterprise 10:10:29 PM

Jealaf6b-32b1-4b65-accT-cf953baba7bs [CESDPOKXwWZB... Windows Windows 8.1 Grace Period 12/11/2022, 03612:00206-5... 1
Enterprise 10:10:29 PM

249b514b-de79-4F34-52d7-chybabaded1s Q1XPRQLYF40QY Windows Windows 8.1 Grace Period 12/11/2022, 03612:00206:5.. 1
Enterprise 10:10:30 PM

py-kms is online since 12/11/2022, 10:01:52 PM. This instance was accessed 3 times. View this softwares license here.

Architectures

There are currently the following architectures available (if you need an other, feel free to open an issue):
* amd64
* arm32v6 Raspberry PI 1 (A, A+, B, B+, Zero)
e arm32v7 Raspberry P12 (B)
* arm64v8 Raspberry P12 (B v1.2), Raspberry PI 3 (A+, B, B+), Raspberry P14 (B)

Please note that any architecture other than the classic amd64 is slightly bigger (~4 MB), caused by the use of gemu
during building.

Docker Compose

You can use docker-compose instead of building and running the Dockerfile, so you do not need to respecify your
settings again and again. The following Docker Compose file will deploy the latest image with the log into your
local directory. Make sure to take a look into the entrypoint.py script to see all supported variable mappings!

version: '3'

services:
kms:
image: ghcr.io/py-kms-organization/py-kms:python3
ports:
- 1688:1688
- 8080:8080
environment:
Ip: "::"
HWID: RANDOM
LOGLEVEL: INFO
restart: always
volumes:
(continues on next page)

10 Chapter 3. Getting Started

py-kms Documentation

(continued from previous page)
- ./db:/home/py-kms/db
- /etc/localtime:/etc/localtime:ro

Parameters

Below is a little bit more extended run command, detailing all the different supported environment variables to set. For
further reference see the start parameters for the docker environment.

docker run -it -d --name py3-kms \
-p 8080:8080 \
-p 1688:1688 \
-v /etc/localtime:/etc/localtime:ro \
--restart unless-stopped ghcr.io/py-kms-organization/py-kms: [TAG]

You can omit the -p 8080: 8080 option if you plan to use the minimal or latest image, which does not include the
sqlite module support.

3.1.2 Systemd

If you are running a Linux distro using systemd, create the file: sudo nano /etc/systemd/system/py3-kms.
service, then add the following (change it where needed) and save:

[Unit]
Description=py3-kms
After=network.target
StartLimitIntervalSec=0

[Service]

Type=simple

Restart=always

RestartSec=1

KillMode=process

User=root

ExecStart=/usr/bin/python3 </path/to/your/pykms/files/folder>/py-kms/pykms_Server.py ::.
-»1688 -V DEBUG -F </path/to/your/log/files/folder>/pykms_logserver.log

[Install]
WantedBy=multi-user.target

Check syntax with sudo systemd-analyze verify py3-kms.service, correct file permission (if needed)
sudo chmod 644 /etc/systemd/system/py3-kms.service, then reload systemd manager configuration sudo
systemctl daemon-reload, start the daemon sudo systemctl start py3-kms.service and view its status
sudo systemctl status py3-kms.service. Check if daemon is correctly running with cat </path/to/your/
log/files/folder>/pykms_logserver.log. Finally a few generic commands useful for interact with your daemon
here.

3.1. Running as a service 11

https://linoxide.com/linux-how-to/enable-disable-services-ubuntu-systemd-upstart/

py-kms Documentation

3.1.3 Upstart (deprecated)

If you are running a Linux distro using upstart (deprecated), create the file: sudo nano /etc/init/py3-kms.
conf, then add the following (change it where needed) and save:

description "py3-kms"

author "SystemRage"

env PYTHONPATH=/usr/bin

env PYKMSPATH=</path/to/your/pykms/files/folder>/py-kms

env LOGPATH=</path/to/your/log/files/folder>/pykms_logserver.log

start on runlevel [2345]

stop on runlevel [016]

exec $PYTHONPATH/python3 $PYKMSPATH/pykms_Server.py :: 1688 -V DEBUG -F $LOGPATH
respawn

Check syntax with sudo init-checkconf -d /etc/init/py3-kms.conf, then reload upstart to recognise this
process sudo initctl reload-configuration. Now start the service sudo start py3-kms, and you can see
the logfile stating that your daemon is running: cat </path/to/your/log/files/folder>/pykms_logserver.
log. Finally a few generic commands useful for interact with your daemon here.

3.1.4 Windows

If you are using Windows, to run pykms_Server. py as service you need to install pywin32, then you can create a file
for example named kms-winservice.py and put into it this code:

import win32serviceutil
import win32service
import win32event
import servicemanager
import socket

import subprocess

class AppServerSvc (win32serviceutil.ServiceFramework):

_svc_name_ = "py-kms"

_svc_display_name_ = "py-kms"

_proc = None

_cmd = ["C:\Windows\Python27\python.exe", "C:\Windows\Python27\py-kms\pykms_Server.py
"] # UPDATE THIS - because Python 2.7 is end of life and you will use other parameters.
< anyway

def __init__(self,args):
win32serviceutil.ServiceFramework.__init__(self,args)
self.hWaitStop = win32event.CreateEvent (None,0,0,None)
socket.setdefaulttimeout (60)

def SvcStop(self):
self.killproc()
self.ReportServiceStatus(win32service.SERVICE_STOP_PENDING)
win32event.SetEvent (self.hWaitStop)

def SvcDoRun(self):
servicemanager.LogMsg(servicemanager . EVENTLOG_INFORMATION_TYPE,
servicemanager.PYS_SERVICE_STARTED,

(continues on next page)

12 Chapter 3. Getting Started

https://eopio.com/linux-upstart-process-manager/
https://sourceforge.net/projects/pywin32/

py-kms Documentation

(continued from previous page)

(self._svc_name_,'"))
self.main()

def main(self):
self._proc = subprocess.Popen(self._cmd)
self._proc.wait()

def killproc(self):
self._proc.kill()

if _name__ == '__main__"':

win32serviceutil.HandleCommandLine (AppServerSvc)

Now in a command prompt type C:\Windows\Python27\python.exe kms-winservice.py install to install
the service. Display all the services with services.msc and find the service associated with py-kms, change the
startup type from manual to auto. Finally Start the service. If this approach fails, you can try to use Non-Sucking
Service Manager or Task Scheduler as described here.

3.1.5 Other Platforms

They might be useful to you:
e FreeNAS
* FreeBSD

3.2 Manual Execution

3.2.1 Dependencies

e Python 3.x.

If the tzlocal module is installed, the “Request Time” in the verbose output will be converted into local time.
Otherwise, it will be in UTC.

* It can use the sqlite3 module, storing activation data in a database so it can be recalled again.
* Installation example on Ubuntu / Mint (requirements. txt is from the sources):

— sudo apt-get update

— sudo apt-get install python3-pip

— pip3 install -r requirements.txt (on Ubuntu Server 22, you’ll need pysqlite3-binary - see
this issue)

3.2. Manual Execution 13

https://nssm.cc/
https://nssm.cc/
https://blogs.esri.com/esri/arcgis/2013/07/30/scheduling-a-scrip/
https://github.com/SystemRage/py-kms/issues/56
https://github.com/SystemRage/py-kms/issues/89
https://github.com/Py-KMS-Organization/py-kms/issues/76

py-kms Documentation

3.2.2 Startup

A Linux user with ip addr command can get his KMS IP (Windows users can try ipconfig /all).

user@host ~ $ ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default glen.
1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

2:

valid_1ft forever preferred_lft forever

inet6 ::1/128 scope host

valid_1ft forever preferred_lft forever

enp6s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc fq_codel state UP group..

inet6

inet6

—.default glen 1000
link/ether *#* ;%% %% %% %% %% bhprd ff:ff:ff:£f:££: £
inet 192.168.1.102/24 brd 192.168.1.255 scope global dynamic noprefixroute enp6s0

va11d lft 860@84sec preferred_lft 860@84sec

T T T T TR **/64 scope global dynamic noprefixroute
va11d lft 66535ec preferred 1ft 30525ec

€y g i sk ke /64 scope 1ink noprefixroute

valid_1ft forever preferred_lft forever

In the example above is 192.168.1.102 the ip we want to listen on, so it is this command (note you can omit the ip

AND port specification if you just wish to listen on all interfaces with port 1688):

[user@host ~/path/to/folder/py-kms $ python3 pykms_Server.py 192.168.1.102 1688

]

To stop pykms_Server.py, in the same bash window where code running, simply press CTRL+C. Alternatively, in

a new bash window, use kill <pid> command (you can type ps aux first and have the process) or killall
<name_of_server>.

3.2.3 Quick Guide

The following are just some brief notes about parameters handling. For a more detailed description see /here.

To generate a random HWID use -w option: python3 pykms_Server.py -w RANDOM.

To get the HWID from any server use the client, for example type: python3 pykms_Client.py :: 1688
-m Windows8.1 -V INFO.

To change your logfile path use -F option, for example: python3 pykms_Server.py -F /path/to/your/
logfile.log -V DEBUG.

To view a minimal set of logging information use -V MININFO option, for example: python3 pykms_Server.
py -F /path/to/your/logfile.log -V MININFO.

To redirect logging on stdout use -F STDOUT option, for example: python3 pykms_Server.py -F STDOUT
-V DEBUG.

You can create logfile and view logging information on stdout at the same time with -F FILESTDOUT option,
for example: python3 pykms_Server.py -F FILESTDOUT /path/to/your/logfile.log -V DEBUG.

With -F STDOUTOFF you disable all stdout messages (but a logfile will be created), for example: python3
pykms_Server.py -F STDOUTOFF /path/to/your/logfile.log -V DEBUG.

With -F FILEOFF you disable logfile creation.

Select timeout (seconds) for py-kms with -t® option, for example python3 pykms_Server.py -t0 10.

14

Chapter 3. Getting Started

py-kms Documentation

* Option -y enables printing asynchronously of messages (pretty / logging).

3.2. Manual Execution

15

py-kms Documentation

16 Chapter 3. Getting Started

CHAPTER
FOUR

GVLK KEYS

These are keys, which can be used to activate a product with py-kms (note this keys are provided officially by Microsoft).
py-kms will not reject any of your keys, instead the product will often revalidate the given key - and sometimes even
reject it by itself (often due too many uses - in that case try to use an other one).

17

py-kms Documentation

4.1 Windows

4.1.1 Windows Server 2022
4.1.2 Windows Server 2019
4.1.3 Windows Server 2016
4.1.4 Windows 10 & Windows 11
4.1.5 Windows Server 2012 R2
4.1.6 Windows 8.1

4.1.7 Windows Server 2012
4.1.8 Windows 8

4.1.9 Windows Server 2008 R2
4.1.10 Windows 7

4.1.11 Windows Server 2008
4.1.12 Windows Vista

4.1.13 Windows Previews

4.2 Office

4.2.1 Office 2021
4.2.2 Office 2019
4.2.3 Office 2016
4.2.4 Office 2013

18

Chapter 4. GVLK Keys

CHAPTER
FIVE

TROUBLESHOOTING

Something does not work as expected ? Before you open an issue, please make sure to at least follow these steps to
further diagnose or even resolve your problem. If you not follow this, do not expect that we can or want to help you!

Are you activating a legit Windows copy checked with sha256, md5 or is it maybe a warez torrent version ?

Did you tried a clean installation (format all) ? You skipped entering any key during installation, turning off
internet connection, first activating and then updating Windows (and eventually later upgrading) ?

Are you activating Windows or Office on a different machine (physical or virtual) where py-kms runs?

Have you installed all latest packages ? Especially before upgrading ? Are you upgrading using the “Update
Assistant”/”Media Creation” tool to switch from Windows 7 / 8 / 8.1 to 10 (for me has always worked) ?

Ifisn’t a clean install, so far as you have kept activated your Windows copy ? Have you used some other activator
(maybe not trusted) that injects or changes .dll files and therefore may have corrupted something ?

Have you forgot to reactivate at least once before 180 (45 or 30, depending on your version) days ?
Is your system very tweaked with some service disabled (have you used O&O Shutup 10 or similar tools) ?

Have you disabled (or created an exception for) ALL firewalls (Public/Private/Office) / antivirus (Windows de-
fender, etc..), server-side AND client-side ?

Have you already activated with a OEM/Retail/other license and now you want to activate using py-kms ? So,
have you switched to volume channel with appropriate GVLK ? Make sure you first deleted the previous key
(example: #24 (comment)) ?

Are you running the commands using the elevated command prompt ?
Are you connecting correctly to your py-kms server instance ?
Have you tried to fix with “Windows Troubleshoot”, sfc /scannow or other strange Windows tools ?

If you activated successfully with py-kms other Windows stuff, consider it could be an error specific for your PC
(so you may need a scented clean installation) ?

Is your py-kms really running ? Already tried to enable debug logs ?
Did you already searched for your issue here ?

Are you running the latest version of py-kms ?

For Office: Did you made sure to use a Office with GLVK support ?!

You found a real bug ? Could you maybe make our life’s easier and describe what goes wrong and also provide
some information about your environment (OS, Python-Version, Docker, Commit-Hashes, Network-Setup) ?

When you post logs: Please remove personal information (replace IPs with something like [TP_ADDRESS_A])...

If you have already thought about all of this, your last hope to solve your problem is reading some verse of the Holy
Bible of activations: “MDL forums” - otherwise “I don’t know !”, but try open up an issue anyways :)

19

https://www.oo-software.com/en/shutup10
https://github.com/SystemRage/py-kms/issues/24#issuecomment-492431436
https://github.com/SystemRage/py-kms/issues

py-kms Documentation

20 Chapter 5. Troubleshooting

CHAPTER

SIX

USAGE

6.1 Start Parameters

6.1.1 pykms_Server.py

Follows a list of usable parameters:

[ip <IPADDRESS>

Instructs py-kms to listen on IJPADDRESS (can be an hostname too). If this option is not specified, /PAD-
DRESS :: is used.

[port <PORT>

Define TCP PORT the KMS service is listening on. Default is 1688.

[—e or --epid <EPID>

Enhanced Privacy ID (EPID) is a cryptographic scheme for providing anonymous signatures. Use EPID
as Windows EPID. If no EPID is specified, a random one will be generated.

[—1 or --lcid <LCID>

Specify the LCID part of the EPID. If an EPID is manually specified, this setting is ignored. Default is
1033 (English - US). The Language Code Identifier (LCID) describes localizable information in Windows.
This structure is used to identify specific languages for the purpose of customizing software for particular
languages and cultures. For example, it can specify the way dates, times, and numbers are formatted as
strings. It can also specify paper sizes and preferred sort order based on language elements. The LCID must
be specified as a decimal number (example: 1049 for “Russian - Russia”). By default py-kms generates a
valid locale ID but this may lead to a value which is unlikely to occur in your country. You may want to
select the locale ID of your country instead. See here for a list of valid LCIDs.

[—w or --hwid <HWID>

Use specified HWID for all products. Use -w RANDOM to generate a random HWID. Default is random.
Hardware Identification is a security measure used by Microsoft upon the activation of the Windows op-
erating system. As part of the Product Activation system, a unique HWID number is generated when the
operating system is first installed. The HWID identifies the hardware components that the system is uti-
lizing, and this number is communicated to Microsoft. Every 10 days and at every reboot the operating
system will generate another HWID number and compare it to the original to make sure that the operating
system is still running on the same device. If the two HWID numbers differ too much then the operating
system will shut down until Microsoft reactivates the product. The theory behind HWID is to ensure that

21

https://msdn.microsoft.com/en-us/library/cc233982.aspx

py-kms Documentation

the operating system is not being used on any device other than the one for which it was purchased and
registered. HWID must be an 16-character string of hex characters that are interpreted as a series of 8
bytes (big endian).

[-c or --client-count <CLIENTCOUNT>

Use this flag to specify the current CLIENTCOUNT. Default is None. Remember that a number >=25 is
required to enable activation of client OSes while for server OSes and Office >=5.

[—a or --activation-interval <ACTIVATIONINTERVAL>

Instructs clients to retry activation every ACTIVATIONINTERVAL minutes if it was unsuccessful, e.g.
because it could not reach the server. The default is 120 minutes (2 hours).

[—r or --renewal-interval <RENEWALINTERVAL>

Instructs clients to renew activation every RENEWALINTERVAL minutes. The default is 10080 minutes
(7 days).

[—s or --sqlite [<SQLFILE>]

Use this option to store request information from unique clients in an SQLite database. Deactivated by
default.

[—t@ or --timeout-idle <TIMEOUTIDLE>

Maximum inactivity time (in seconds) after which the connection with the client is closed. Default setting
is serve forever (no timeout).

[—tl or --timeout-sndrcv <TIMEOUTSNDRCV>

Set the maximum time (in seconds) to wait for sending / receiving a request / response. Default is no
timeout.

[—y or --async-msg

With high levels of logging (e.g hundreds of log statements), in a traditional synchronous log model, the
overhead involved becomes more expensive, so using this option you enable printing (pretty / logging)
messages asynchronously reducing time-consuming. Deactivated by default.

[—V or --loglevel <{CRITICAL, ERROR, WARNING, INFO, DEBUG, MININFO}>

Use this flag to set a logging loglevel. The default is ERROR. example:

[user@host ~/path/to/folder/py-kms $ python3 pykms_Server.py -V INFO

creates pykms_logserver.log with these initial messages:

Mon, 12 Jun 2017 22:09:00 INFO TCP server listening at :: on port 1688.
Mon, 12 Jun 2017 22:09:00 INFO HWID: 364F463A8863D35F

[—F or --logfile <LOGFILE>

Creates a LOGFILE.log logging file. The default is named pykms_logserver.log. example:

22 Chapter 6. Usage

py-kms Documentation

user@host ~/path/to/folder/py-kms $ python3 pykms_Server.py 192.168.1.102 1688 -F ~/path/
—to/folder/py-kms/newlogfile.log -V INFO -w RANDOM

creates newlogfile.log with these initial messages:

Mon, 12 Jun 2017 22:09:00 INFO TCP server listening at 192.168.1.102 on port 1688.
Mon, 12 Jun 2017 22:09:00 INFO HWID: 58C4F4E53AE14224

You can also enable other suboptions of -F doing what is reported in the following table:

[-s or --logsize <MAXSIZE>

Use this flag to set a maximum size (in MB) to the output log file. Deactivated by default.

subparser connect

[—n or --listen <'IP,PORT'>]

Use this option to add multiple listening ip address - port couples. Note the format with the comma between
the ip address and the port number. You can use this option more than once.

[—b or --backlog <BACKLOG>

Use this option to specify the maximum length of the queue of pending connections, referred to a ip address
- port couple. If placed just after connect refers to the main address and all additive couples without -b
option. Default is 5.

[—U. Oor --no-reuse

Use this option not to allow binding / listening to the same ip address - port couple specified with -n. If
placed just after connect refers to the main address and all additive couples without -u option. Reusing
port is activated by default (except when running inside the Windows Sandbox and the current user is
WDAGUtilityAccount).

[—d or --dual

Use this option to allow listening to an IPv6 address also accepting connections via IPv4. If used it refers
to all addresses (main and additional). Deactivated by default.

examples (with fictitious addresses and ports):

6.1.2 pykms_Client.py

If py-kms server doesn’t works correctly, you can test it with the KMS client pykms_Client.py, running on the same
machine where you started pykms_Server. py.

For example (in separated bash windows) run these commands:

user@host ~/path/to/folder/py-kms $ python3 pykms_Server.py -V DEBUG
user@host ~/path/to/folder/py-kms $ python3 pykms_Client.py -V DEBUG

If you wish to get KMS server from DNS server: (ie perform a DNS resolution on _vlmecs._tcp.domain.tld, if ever there
are several answers, only the first one is selected.). Althought that mode is supposed to be specific to devices connect

6.1. Start Parameters 23

py-kms Documentation

to an Active Directory domain, setting a fully qualified name and a workgroup may help to use that automatic KMS
discovery feature.

user@host ~/path/to/folder/py-kms $ python3 pykms_Client.py -V DEBUG -F STDOUT -D.
<,contoso.com
user@host ~/path/to/folder/py-kms $ python3 pykms_Client.py -V DEBUG -F STDOUT -D.
<,contoso.com

Or if you want better specify:

user@host ~/path/to/folder/py-kms $ python3 pykms_Server.py <YOUR_IPADDRESS> 1688 -V.
—DEBUG
user@host ~/path/to/folder/py-kms $ python3 pykms_Client.py <YOUR_IPADDRESS> 1688 -V.
—DEBUG

You can also put further parameters as defined below:

[ip <IPADDRESS>

Define IPADDRESS (or hostname) of py-kms’ KMS Server. This parameter is always required.

[port <PORT>

Define TCP PORT the KMS service is listening on. Default is 1688.

-m or --mode <{WindowsVista, Windows7, Windows8, Windows8.1, Windows1®, Office2010,..
—0ffice2013, Office2016, Office2019}>

Use this flag to manually specify a Microsoft PRODUCTNAME for testing the KMS server. Default is
WindowsS.1.

[—c or --cmid <CMID>

Use this flag to manually specify a CMID to use. If no CMID is specified, a random one will be generated.
The Microsoft KMS host machine identifies KMS clients with a unique Client Machine ID (CMID, ex-
ample: ae3a27d1-b73a-4734-9878-70c949815218). For a KMS client to successfully activate, the KMS
server needs to meet a threshold, which is a minimum count for KMS clients. Once a KMS server records
a count which meets or exceeds threshold, KMS clients will begin to activate successfully. Each unique
CMID recorded by KMS server adds towards the count threshold for KMS clients. This are retained by the
KMS server for a maximum of 30 days after the last activation request with that CMID. Note that duplicate
CMID only impacts on KMS server machine count of client machines. Once KMS server meets minimum
threshold, KMS clients will activate regardless of CMID being unique for a subset of specific machines or
not.

[—n or --name <MACHINENAME>

Use this flag to manually specify an ASCII MACHINENAME to use. If no MACHINENAME is specified
a random one will be generated.

[—t@ or --timeout-idle <TIMEOUTIDLE>

Set the maximum time (in seconds) to wait for a connection attempt to KMS server to succeed. Default is
no timeout.

[—tl or --timeout-sndrcv <TIMEOUTSNDRCV>

24 Chapter 6. Usage

py-kms Documentation

Set the maximum time (in seconds) to wait for sending / receiving a request / response. Default is no
timeout.

[—y or --async-msg

Prints pretty / logging messages asynchronously. Deactivated by default.

[—V or --loglevel <{CRITICAL, ERROR, WARNING, INFO, DEBUG, MININFO}>

Use this flag to set a logging loglevel. The default is ERROR.

[—F or --logfile <LOGFILE>

Creates a LOGFILE.log logging file. The default is named pykms_logclient.log. You can enable same
pykms_Server.py suboptions of -F.

[-s or —-logsize <MAXSIZE>

Use this flag to set a maximum size (in MB) to the output log file. Deactivated by default.

6.2 Docker Environment

This are the currently used ENV statements from the Dockerfile(s). For further references what exactly the parameters
mean, please see the start parameters for the server.

IP-address
The IP address to listen on. The default is "::" (all interfaces).
ENV IP ::

TCP-port
The network port to listen on. The default is "1688".
ENV PORT 1688

ePID

Use this flag to manually specify an ePID to use. If no ePID is specified, a random.
—ePID will be generated.

ENV EPID ""

1lcid

Use this flag to manually specify an LCID for use with randomly generated ePIDs..,
—Default is 1033 (en-us).

ENV LCID 1033

The current client count

Use this flag to specify the current client count. Default is 26.

A number >=25 is required to enable activation of client OSes; for server 0Ses and.
—0ffice >=5.

ENV CLIENT_COUNT 26

The activation interval (in minutes)

Use this flag to specify the activation interval (in minutes). Default is 120 minutes.
— (2 hours).

ENV ACTIVATION_INTERVAL 120

(continues on next page)

6.2. Docker Environment 25

py-kms Documentation

(continued from previous page)

The renewal interval (in minutes)

Use this flag to specify the renewal interval (in minutes). Default is 10080 minutes.
- (7 days).

ENV RENEWAL_INTERVAL 10080

hwid

Use this flag to specify a HWID.

The HWID must be an 16-character string of hex characters.

The default is "RANDOM" to auto-generate the HWID or type a specific value.
ENV HWID RANDOM

log level ("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG")
Use this flag to set a Loglevel. The default is "ERROR".
ENV LOGLEVEL ERROR

Log file
Use this flag to set an output Logfile. The default is "/var/log/pykms_logserver.log".
ENV LOGFILE /var/log/pykms_logserver.log

Log file size in MB

Use this flag to set a maximum size (in MB) to the output log file. Deactivated by.
—default.

ENV LOGSIZE ""

6.3 Activation Procedure

The product asks for a key during installation, so it needs you to enter the GVLK. Then the user can set connection
parameters, while KMS server must already be running on server machine. Finally with specific commands, activation
occurs automatically and can be extended later every time for another 180 (or 30 or 45) days.

6.3.1 Windows

The //nologo option of cscript was used only to hide the startup logo.

26 Chapter 6. Usage

py-kms Documentation

NPPR9

name set to

ement Se

8 minu

0. Run a Command Prompt as Administrator (you are directly in C: \Windows\System32 path).
1. This is optional, it’s for unistalling any existing product key.
. Then put in your product’s GVLK.

. Set connection parameters.

A~ W

. Try online activation, but if that fails with error...

* 0xCO04F074 You’ll most likely have to configure your firewall that it accepts incoming connections on
TCP port 1688. So for Linux users (server-side with pykms_Server.py running): sudo ufw allow
1688 (revert this rule sudo ufw delete allow 1688) should fix that.

6.3. Activation Procedure 27

py-kms Documentation

* 0xCO04F069 Take a look into the issue here, it will may help you...
5. Attempt online activation (now with traffic on 1688 enabled).

6. View license informations (optional).

6.3.2 Office

Note that you’ll have to install a volume license (VL) version of Office. Office versions downloaded from MSDN and
/ or Technet are non-VL.

BN Amministratore: Prompt dei comandi — O b

that the application is running within the

BN Amministratore: Prompt dei comandi — O b

edition

y ospp.vbs /inp

28 Chapter 6. Usage

https://github.com/SystemRage/py-kms/issues/57

py-kms Documentation

BN Amministratore: Prompt dei comandi — O b

» ospp.vbs

mpti v the following produ

ProPlu

ProPlu
LUME_|

d but the owner should

0. Run a Command Prompt as Administrator and navigate to Office folder cd C:\ProgramFiles\Microsoft
Office\OfficeXX (64-bit path) or cd C:\ProgramFiles(x86)\Microsoft Office\OfficeXX (32-bit
path), where XX = 14 for Office 2010, 15 for Office 2013, 16 for Office 2016 or Office 2019.

1. As you can see, running /dstatus, my Office is expiring (14 days remaining).
2. Only for example, let’s go to uninstall this product.

3. This is confirmed running /dstatus again.

4. Now i put my product’s GVLK (and you your key).

5. Set the connection parameter KMS server address.

6. Set the connection parameter KMS server port.

6.3. Activation Procedure 29

py-kms Documentation

7. Activate installed Office product key.

8. View license informations (in my case product is now licensed and remaining grace 180 days as expected).

30 Chapter 6. Usage

CHAPTER
SEVEN

7.1

7.3

py-kms_2022-12-16

Added support for new web-gui into Docker
Implemented whole-new web-based GUI with Flask
Removed old GUI (Etrigan) from code and resources
Removed sqliteweb

Removed Etrigan (GUI)

py-kms_2022-12-07

Added warning about Etrigan (GUI) being deprecated
More docs (do not run on same machine as client)
Added Docker support for multiple listen IPs

Added graceful Docker shutdowns

py-kms_2021-12-23

More Windows 10/11 keys

Fixed some deprecation warnings

Fixed SO_REUSEPORT platform checks
Fixed loglevel “MININFO” with Docker
Added Docker healthcheck

Added UID/GID change support for Docker

Dependabot alerts

CHANGELOG

31

py-kms Documentation

7.4 py-kms_2021-10-22

* Integrated Office 2021 GLVK keys & database
* Docker entrypoint fixes

» Updated docs to include SQLite stuff

* Fix for undefined timezones

* Removed LOGFILE extension checks

* Added support for Windows 11

7.5 py-kms_2021-10-07

* Helm charts for Kubernetes deployment
* Windows 2022 updates
¢ Faster Github Action builds

7.6 py-kms_2021-11-12

Addded GHCR support
* Docs table reformatted
Updated GUI

* Windows Sandbox fix

* Added contribution guidelines
* Docker multiarch

¢ Reshot screenshots in docs

7.7 py-kms_2020-10-01

* Sql database path customizable.
* Sql database file keeps different Appld.
* Support for multi-address connection.

¢ Added timeout send / receive.

32 Chapter 7. Changelog

py-kms Documentation

7.8 py-kms_2020-07-01

* py-kms Gui: now matches all cli options, added modes onlyserver / onlyclient, added some animations.

Added suboptions FILEOFF and STDOUTOFF of -F.

* Created option for asynchronous messages.

* Cleaned options parsing process.

7.9 py-kms_2020-02-02

* Optimized pretty-print messages process.

Added -F FILESTDOUT option.

* Added deamonization options (via Etrigan project).
* py-kms GUI resurrected (and improved).

¢ Cleaned, cleaned, cleaned.

7.10 py-kms_2019-05-15

* Merging for Python2 / Python3 compatibility all-in-one.
* Added new options:
— timeout, logsize.

— more control on logging and info visualization (custom loglevel and stdout logfile redirection) to match this
request.

* Setup for multithreading support.
* Graphical improvements:
— added a (“really silly”) tkinter GUI as an alternative to command line.
* Dockerized with sqlite-web.
» Fixed activation threshold.

* Renamed files, cosmetics and many other little big adjustments.

7.11 py-kms_2018-11-15

* Implemented some good modifications inspired by this other fork.

— Clean up code (deleted no longer useful files randomHWID.py, randomEPID.py, timezones.py; erased
useless functions and import modules)

— Reading parameters directly from a slightly modified KmsDataBase.xml (created with LicenseManager
5.0 by Hotbird64 HGM) with kmsDB2Dict.py

* Added support for Windows Server 2019 and Office 2019.

* Improved random EPID generation.

7.8. py-kms_2020-07-01 33

https://github.com/SystemRage/Etrigan
https://github.com/SystemRage/py-kms/pull/21
https://github.com/SystemRage/py-kms/issues/22
https://github.com/SystemRage/py-kms/pull/20
https://github.com/ThunderEX/py-kms

py-kms Documentation

* Corrected this in kmsBase.py

7.12 py-kms_2018-03-01

* py-kms NOW is for Python3 too (py3-kms), the previous one (written with Python2) is renamed py2-kms
* Repaired logging messages

* Added pretty processing messages

7.13 py-kms_2017-06-01

* Added option verbose logging in a file
e Updated “kmsBase.py” with new SKUIDs

Added a brief guide “py-kms-Guide.pdf” (replaced “client-activation.txt”)

* Added a well formatted and more complete list of volume keys “py-kms-ClientKeys.pdf” (replaced “client-
keys.txt”)

7.14 py-kms_2016-12-30

* Updated kmsBase.py (Matches LicenseManager 4.6.0 by Hotbird64 HGM)

7.15 py-kms_2016-08-13

* Fixed major bug on Response function

e Fixed Random PID Generator (thanks: mkuba50)

7.16 py-kms_2016-08-12

* Added missing UUID, credits: Hotbird64
* Added Windows Server 2016 in random PID generator

7.17 py-kms_2016-08-11

* Added Windows Server 2016 UUID
* Fixed GroupID and PIDRange
* Added Office 2016 CountKMSID

34 Chapter 7. Changelog

https://github.com/SystemRage/py-kms/issues/8

py-kms Documentation

7.18 py-kms_2015-07-29

e Added Windows 10 UUID

7.19 py-kms_2014-10-13 build 3:

* Added Client Activation Examples: “client-activation.txt”

* Added Volume Keys: “client-keys.txt”

7.20 py-kms_2014-10-13 build 2:

* Added missing skulds in file “kmsbase.py”. Thanks (user_hidden)

7.21 py-kms_2014-10-13 build 1:

e The server now outputs the hwid in use.

e The server hwid can be random by using parameter: “-w random”. Example:

Included file “randomHWID.py” to generate random hwid on demand.

Included file “randomPID.py” to generate random epid and hwid on demand.

7.22 py-kms_2014-03-21T232943Z:

* The server HWID can now be specified on the command line.

* The client will print the HWID when using the v6 protocol.

7.23 py-kms_2014-01-03T032458Z:

* Made the sqlite3 module optional.

“python server.py -w random’

i

* Changed the “log” flag to an “sqlite” flag and made a real log flag in preparation for when real request logging

is implemented.

7.24 py-kms_2014-01-03T025524Z:

e Added RPC response decoding to the KMS client emulator.

7.18. py-kms_2015-07-29

35

py-kms Documentation

7.25 py-kms_2013-12-30T064443Z:

e The v4 hash now uses the proper pre-expanded key.

7.26 py-kms_2013-12-28T073506Z:

* Modified the v4 code to use the custom aes module in order to make it more streamlined and efficient.

7.27 py-kms_2013-12-20T051257Z:

* Removed the need for the pre-computed table (tablecomplex.py) for vd CMAC calculation, cutting the zip file size
in half.

7.28 py-kms_2013-12-16T214638Z:

 Switched to getting the to-be-logged request time from the KMS server instead of the client.

7.29 py-kms_2013-12-16T030001Z:

* You can now specify the CMID and the Machine Name to use with the client emulator.

7.30 py-kms_2013-12-16T021215Z:

* Added a request-logging feature to the server. It stores requests in an SQLite database and uses the ePIDs stored
there on a per-CMID basis.

* The client emulator now works for v4, v5, and v6 requests.

* The client emulator now also verifies the KMS v4 responses it receives.

7.31 py-kms_2013-12-14T230215Z

* Added a client (work in progress) that right now can only generate and send RPC bind requests.

* Added a bunch of new classes to handle RPC client stuff, but I might just end up moving their functions back into
the old classes at some point.

* Lots of other code shuffling.

* Made the verbose and debug option help easier to read.

Added some server error messages.

36 Chapter 7. Changelog

py-kms Documentation

7.32 py-kms_2013-12-08T051332Z:

* Made some really huge internal changes to streamline packet parsing.

7.33 py-kms_2013-12-06T034100Z:

* Added tons of new SKU IDs

7.34 py-kms_2013-12-05T044849Z:

* Added Office SKU IDs

* Small internal changes

7.35 py-kms_2013-12-04T010942Z:

e Made the rpcResponseArray in rpcRequest output closer to spec

7.36 py-kms_2013-12-01T063938Z:

* SKUID conversion: Converts the SKUID UUID into a human-readable product version for SKUIDs in its SKUID

dictionary.
* Fancy new timezone conversion stuff.
* Enabled setting custom LCIDs.
* Data parsing is now handled by structure.py.

* Some other minor stuff you probably won’t notice.

7.37 py-kms_2013-11-27T061658Z:

* Got rid of custom functions module (finally)

7.38 py-kms_2013-11-27T054744Z:

* Simplified custom functions module
e Got rid of “v4” subfolder
* Cleaned up a bunch of code

7.32. py-kms_2013-12-08T051332Z:

37

py-kms Documentation

7.39 py-kms_2013-11-23T044244Z:

* Added timestamps to verbose output

* Made the verbose output look better

7.40 py-kms_2013-11-21T014002Z:

* Moved some stuff into verbose output

* Enabled server ePIDs of arbitrary length

7.41 py-kms_2013-11-20T180347Z:

* Permanently fixed machineName decoding

* Adheres closer to the DCE/RPC protocol spec

Added client info to program output

* Small formatting changes

7.42 py-kms_2013-11-13:

e First working release added to the Mega folder.

38 Chapter 7. Changelog

CHAPTER
EIGHT

README

Keep in mind that this project is not intended for production use. Feel free to use it to test your own systems or maybe
even learn something from the protocol structure. :)

8.1 History

py-kms is a port of node-kms created by cyrozap, which is a port of either the C#, C++, or .NET implementations of
KMS Emulator. The original version was written by CODYQX4 and is derived from the reverse-engineered code of
Microsoft’s official KMS. This version of py-kms is for itself a fork of the original implementation by SystemRage,
which was abandoned early 2021.

8.2 Features

* Responds to v4, v5, and v6 KMS requests.
* Supports activating:

Windows Vista

Windows 7

Windows 8

Windows 8.1

Windows 10 (1511 /1607 /1703 /1709 / 1803 / 1809)
Windows 10 (1903 / 1909 / 20H1, 20H2, 21H1, 21H2)
Windows 11 (21H2)

Windows Server 2008

Windows Server 2008 R2

Windows Server 2012

Windows Server 2012 R2

Windows Server 2016

Windows Server 2019

39

http://forums.mydigitallife.info/members/183074-markedsword
http://forums.mydigitallife.info/members/89933-CODYQX4
https://github.com/SystemRage/py-kms

py-kms Documentation

Windows Server 2022

— Microsoft Office 2010 (Volume License)
— Microsoft Office 2013 (Volume License)
— Microsoft Office 2016 (Volume License)
— Microsoft Office 2019 (Volume License)

— Microsoft Office 2021 (Volume License)
— It’s written in Python (tested with Python 3.10.1).
— Supports execution by Docker, systemd and many more. ..

— Uses sqlite for persistent data storage (with a simple web-based explorer).

8.3 Documentation

The wiki has been completly reworked and is now available on readthedocs.io. It should provide you all the necessary
information about how to setup and to use py-kms , all without clumping this readme. The documentation also houses
more details about activation with py-kms and how to get GVLK keys.

8.4 Quick start

¢ To start the server, execute python3 pykms_Server.py [IPADDRESS] [PORT], the default IPADDRESS is
:: (all interfaces) and the default PORT is 1688. Note that both the address and port are optional. It’s allowed
to use IPv4 and IPv6 addresses. If you have a IPv6-capable dual-stack OS, a dual-stack socket is created when
using a IPv6 address. In case your OS does not support IPv6, make sure to explicitly specify the legacy IPv4
of 0.0.0.0!

e To start the server automatically using Docker, execute docker run -d --name py-kms --restart
always -p 1688:1688 ghcr.io/py-kms-organization/py-kms.

* To show the help pages type: python3 pykms_Server.py -hand python3 pykms_Client.py -h.

8.5 License

* py-kms is

40 Chapter 8. Readme

https://py-kms.readthedocs.io/en/latest/

	Contributing
	Documentation
	Understanding Key Management Service
	About GVLK keys
	SLMGR and OSPP commands
	SLMGR
	OSPP

	Supported Products
	Further References

	Getting Started
	Running as a service
	Docker
	Tags
	Architectures
	Docker Compose
	Parameters

	Systemd
	Upstart (deprecated)
	Windows
	Other Platforms

	Manual Execution
	Dependencies
	Startup
	Quick Guide

	GVLK Keys
	Windows
	Windows Server 2022
	Windows Server 2019
	Windows Server 2016
	Windows 10 & Windows 11
	Windows Server 2012 R2
	Windows 8.1
	Windows Server 2012
	Windows 8
	Windows Server 2008 R2
	Windows 7
	Windows Server 2008
	Windows Vista
	Windows Previews

	Office
	Office 2021
	Office 2019
	Office 2016
	Office 2013

	Troubleshooting
	Usage
	Start Parameters
	pykms_Server.py
	subparser connect

	pykms_Client.py

	Docker Environment
	Activation Procedure
	Windows
	Office

	Changelog
	py-kms_2022-12-16
	py-kms_2022-12-07
	py-kms_2021-12-23
	py-kms_2021-10-22
	py-kms_2021-10-07
	py-kms_2021-11-12
	py-kms_2020-10-01
	py-kms_2020-07-01
	py-kms_2020-02-02
	py-kms_2019-05-15
	py-kms_2018-11-15
	py-kms_2018-03-01
	py-kms_2017-06-01
	py-kms_2016-12-30
	py-kms_2016-08-13
	py-kms_2016-08-12
	py-kms_2016-08-11
	py-kms_2015-07-29
	py-kms_2014-10-13 build 3:
	py-kms_2014-10-13 build 2:
	py-kms_2014-10-13 build 1:
	py-kms_2014-03-21T232943Z:
	py-kms_2014-01-03T032458Z:
	py-kms_2014-01-03T025524Z:
	py-kms_2013-12-30T064443Z:
	py-kms_2013-12-28T073506Z:
	py-kms_2013-12-20T051257Z:
	py-kms_2013-12-16T214638Z:
	py-kms_2013-12-16T030001Z:
	py-kms_2013-12-16T021215Z:
	py-kms_2013-12-14T230215Z
	py-kms_2013-12-08T051332Z:
	py-kms_2013-12-06T034100Z:
	py-kms_2013-12-05T044849Z:
	py-kms_2013-12-04T010942Z:
	py-kms_2013-12-01T063938Z:
	py-kms_2013-11-27T061658Z:
	py-kms_2013-11-27T054744Z:
	py-kms_2013-11-23T044244Z:
	py-kms_2013-11-21T014002Z:
	py-kms_2013-11-20T180347Z:
	py-kms_2013-11-13:

	Readme
	History
	Features
	Documentation
	Quick start
	License

